
scikit-nni Documentation
Release 0.2.1

Kapil Sachdeva

Oct 22, 2019





Contents:

1 scikit-nni 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Installation 7
2.1 Stable release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 From sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Usage 9
3.1 Step 1 - Write specification file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Step 2 - Generate your experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Step 3 - Run your experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 sknni 13
4.1 sknni package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Contributing 15
5.1 Types of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Get Started! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Pull Request Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Deploying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 History 19
6.1 0.2.1 (2019-10-21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 0.1.1 (2019-10-20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Indices and tables 21

Python Module Index 23

Index 25

i



ii



CHAPTER 1

scikit-nni

Hyper parameters search for scikit-learn components using Microsoft NNI

• Free software: Apache Software License 2.0

• Documentation: https://scikit-nni.readthedocs.io.

1.1 Introduction

Microsoft NNI (Neural Network Intelligence) is a toolkit to help users run automated machine learning (AutoML) ex-
periments. The tool dispatches and runs trial jobs generated by tuning algorithms to search the best neural architecture
and/or hyper-parameters in different environments like local machine, remote servers and cloud.

Read and explore more about Microsoft NNI here - https://github.com/microsoft/nni

scikit-nni is a helper tool (and a package) that :

• generates the configuration (config.yaml & search-space.json) required for NNI

• automatically builds the scikit-learn pipelines based on your specification and becomes an experiment/trial code
for Microsoft NNI to run.

1.1.1 What value does this tool add to Microsoft NNI ?

First note that this tool is specifically written to only help with scikit-learn pipelines and to tune classification algo-
rithms. In near future, I would add the support for regression algorithms as well.

Now when you use Microsoft NNI you need to specify (at minimum) 3 files :

• A search space (json) file that contains the parameters that you want to search/tune.

1

https://pypi.python.org/pypi/scikit-nni
https://travis-ci.org/ksachdeva/scikit-nni
https://scikit-nni.readthedocs.io/en/latest/?badge=latest
https://scikit-nni.readthedocs.io
https://github.com/microsoft/nni


scikit-nni Documentation, Release 0.2.1

• Your code/experiment. In your experiment code, you perform these tasks in sequence :

– Request for the parameters from NNI server

– Create your model using these parameters

– Fit your model

– Score your model

– Report the score to NNI server.

• a configuration file where you specify the tuner, which mode to use to run, path to your code file and search
space file.

scikit-nni eliminiates the second step i.e. it builds the scikit pipelines, request NNI server for parameters and also
report back the score of your model. It also simplifies (in IMHO) the input specification by only requiring one file
instead of 3.

Sounds interesting ? Then read the documentation below, install scikit-nni, and more importantly provide feedback if
it does not work for you and/or you think it can be improved.

1.2 Features

• Hyperparameters search for scikit-learn pipelines using Microsoft NNI

• No code required to define the pipelines

• Built-in datasource reader for reading npz files for classification

• Support for using custom datasource reader

• Single configuration file to define NNI configuration and search space

I plan to add more datasource readers (e.g. CSV, libSVM format files etc). Contributions are always welcome !

1.3 Usage

1.3.1 Step 1 - Write a specification file

The specification file is essentially a YAML file but with extension .nni.yml

There are 4 parts (sections) in the configuration file.

Datasource Section

This is where you will specify the (python) callable that sknni would be invoking to get the training and test dataset.

The callable must return two values where each value is a tuple of two items. The first tuple consists of training data
(X_train, y_train) and the second tuple consists of test data (X_test, y_test).

An example callable would look like this:

2 Chapter 1. scikit-nni



scikit-nni Documentation, Release 0.2.1

import numpy as np

from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

class ACustomDataSource(object):
def __init__(self):

pass

def __call__(self, test_size:float=0.25):
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.

→˓target, random_state=99, test_size=test_size)

return (X_train, y_train), (X_test, y_test)

In the above example, the callable generates the train and test dataset. The callable can even have paramaters for e.g.
in this example you could optionally pass the fraction of data to be used for testing.

Now let’s see how you would add it in the specification file.

# Datasource is how you specify which callable
# sknni will invoke to get the data
dataSource:

reader: yourmodule.ACustomDataSource
params:

test_size: 0.30

Make sure that during the exeuction of the experiment your datasource (i.e. in this case yourmod-
ule.ACustomDataSource) is available in the PYTHONPATH.

Here is an additional example showing the usage of a built-in datasource reader

dataSource:
reader: sknni.datasource.NpzClassificationSource
params:

dir_path: /Users/ksachdeva/Desktop/Dev/myoss/scikit-nni/examples/data/
→˓multiclass-classification

NpzClassificationSource expects that at dir_path you have two folders - train and test. In each folder are the files
named as 0.npz, 1.npz etc. Every file contains that features for that corresponding class.

The repository contains two such datasources to do binary and multiclass classifications.

Pipline definition Section

Below is an example of this type of section. You simply specify the list of steps of your scikit-learn Pipeline.

Note - The sequence of steps is very important.

What you MUST ensure is that the full qualified name of your scikit-learn preprocessors, transformers and estimators
is correctly specified & spelled. sknni uses reflection and introspection to create the instances of these components so if
you have a typo in the names and/or they are not available in your PYTHONPATH you will get an error at experiment
execution time.

sklearnPipeline:
name: normalizer_svc

(continues on next page)

1.3. Usage 3



scikit-nni Documentation, Release 0.2.1

(continued from previous page)

steps:
normalizer:

type: sklearn.preprocessing.Normalizer
classArgs:

norm: l2
svc:

type: sklearn.svm.SVC

In above example, there are 2 steps. The first step is to normalize the data and the second step is train a classifier using
Support Vector Machine.

Search Space Section

This section corresponds to the search space for your hyperparameters. When you use `nnictrl` this is typically
specified in search-space.json file.

See https://nni.readthedocs.io/en/latest/Tutorial/SearchSpaceSpec.html to learn more about the search space syntax.

Here are the important things to note about this section -

• The syntax is the same (except we are using YAML here instead of JSON) for specifiying parameter types and
ranges.

• You MUST specifiy the parameters corresponding to the step in your scikit pipeline.

• You MUST use the names of the parameters that are same as the ones accepted by the constructors of scikit-
learn components (i.e. preprocessors, estimators etc).

Below is an example of this type of section.

nniConfigSearchSpace:
- normalizer:

norm:
_type: choice
_value: [l2, l1]

- svc:
C:

_type: uniform
_value: [0.1,0.0]

kernel:
_type: choice
_value: [linear,rbf,poly,sigmoid]

degree:
_type: choice
_value: [1,2,3,4]

gamma:
_type: uniform
_value: [0.01,0.1]

coef0:
_type: uniform
_value: [0.01,0.1]

Note that sklearn.svm.SVC takes C, kernel, degree, gamman and coef0 is the paramaters and hence we have used here
the same names (keys) in the search space specification. You can add as many or as little parameters to search for.

4 Chapter 1. scikit-nni

https://nni.readthedocs.io/en/latest/Tutorial/SearchSpaceSpec.html


scikit-nni Documentation, Release 0.2.1

NNI Config Section

This is the simplest of all sections as there is nothing new here from sknni perspective. You just copy-paste here your
NNI’s config.yaml here. You do not have to specify codedir and command field in the trial subsection as this is added
by the sknni in the generated configuration files.

See https://nni.readthedocs.io/en/latest/Tutorial/ExperimentConfig.html

Here is an example of this type of section.

# This is exactly same as the one that of NNI
# except that you do not have to specify the command
# and code fields. They are automatically added by the sknni generator
nniConfig:

authorName: default
experimentName: example_sklearn-classification
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 100
trainingServicePlatform: local
useAnnotation: false
tuner:

builtinTunerName: TPE
classArgs:

optimize_mode: maximize
trial:

gpuNum: 0

You can look at the various examples in the repository to learn how to define your own specification file.

1.3.2 Step 2 - Generate your experiment

sknni generate-experiment --spec example/basic_svc.nni.yml --output-dir experiments

Above command will create a directory experiments/svc-classification with the following files

• The original specification file i.e. basic_svc.nni.yml (used during experiment run as well)

• Generated Microsoft NNI’s config.yml

• Generated Microsoft NNI’s search-space.json

Note - there is no python file as typically shown in the examples of Microsoft NNI as the command in ends up invoking
sknni entry point when the experiment is run.

1.3.3 Step 3 - Run your experiment

This is same as running nnitctl

nnictl create --config experiments/svc-classification/config.yml

1.3. Usage 5

https://nni.readthedocs.io/en/latest/Tutorial/ExperimentConfig.html


scikit-nni Documentation, Release 0.2.1

1.4 Troubleshooting

1.4.1 My trials are failing what is wrong ?

Your trial could fail for many reasons -

• Bug in your DataSource code resulting the exception/error

• Wrong inputs to your (or built-in) DataSources resulting in exception/error

• Your DataSource (python callable) could not be found

Here is what I would recommend -

• Test your DataSource code

• The webui does not always display all the errors/logs so look at the log of your trials and more specifically stderr
file

cat $HOME/nni/experiments/<YOUR_EXPERIMENT_ID>/trials/<TRIAL_ID>/stderr

cat $HOME/nni/experiments/<YOUR_EXPERIMENT_ID>/trials/<TRIAL_ID>/trial.log

1.5 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

6 Chapter 1. scikit-nni

https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage


CHAPTER 2

Installation

2.1 Stable release

To install scikit-nni, run this command in your terminal:

$ pip install scikit-nni

This is the preferred method to install scikit-nni, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for scikit-nni can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/ksachdeva/scikit-nni

Or download the tarball:

$ curl -OJL https://github.com/ksachdeva/scikit-nni/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

7

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/ksachdeva/scikit-nni
https://github.com/ksachdeva/scikit-nni/tarball/master


scikit-nni Documentation, Release 0.2.1

8 Chapter 2. Installation



CHAPTER 3

Usage

3.1 Step 1 - Write specification file

The specification file is essentially a YAML file but with extension .nni.yml

There are 4 parts (sections) in the configuration file.

3.1.1 Datasource Section

This is where you will specify the (python) callable that sknni would invoking to the training and test dataset.

The callable should return 2 values where each value is a tuple of two items. The first tuple consists of training data
(X_train, y_train) and the second tuple consists of test data (X_test, y_test).

An example callable would look like this:

import numpy as np

from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

class ACustomDataSource(object):
def __init__(self):

pass

def __call__(self, test_size:float=0.25):
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.

→˓target, random_state=99, test_size=test_size)

return (X_train, y_train), (X_test, y_test)

In the above example, the callable generates the train and test dataset. The callable can even have paramaters for e.g.
in this example you could optionally pass the fraction of data to be used for testing purposes.

9



scikit-nni Documentation, Release 0.2.1

Now let’s see how you would specify in the specification file.

# Datasource is how you specify which callable
# sknni will invoke to get the data
dataSource:

reader: yourmodule.ACustomDataSource
params:

test_size: 0.30

Make sure that during the exeuction of the experiment your datasource (i.e. in this case yourmod-
ule.ACustomDataSource) is available in the PYTHONPATH.

Here is an additional example showing the usage of an built-in datasource reader

dataSource:
reader: sknni.datasource.NpzClassificationSource
params:

dir_path: /Users/ksachdeva/Desktop/Dev/myoss/scikit-nni/examples/data/
→˓multiclass-classification

3.1.2 Pipline definition Section

Below is the example of the section. You simply specify the list of steps of your typical scikit-learn Pipeline.

Note - The sequence of steps is very important.

What you MUST ensure is that the full qualified name of your scikit-learn preprocessors, transformers and estimators
is correctly specified. sknni uses reflection and introspection to create the instances so if you have a typo in the names
and/or they are not available in your PYTHONPATH you will get an error at experiment execution time.

sklearnPipeline:
name: normalizer_svc
steps:

normalizer:
type: sklearn.preprocessing.Normalizer

svc:
type: sklearn.svm.SVC

In above example, there are 2 steps. The first step is to normalize the data and the second step is train a classifier using
Support Vector Machine.

3.1.3 Search Space Section

This section corresponds to the search space for your hyperparameters. When you `nnictrl` this is typically
specified in search-space.json file.

Here are the important things to note about this section -

• The syntax is the same (except we are using YAML here instead of JSON) for specifiying parameter types and
ranges.

• You MUST specifiy the parameters corresponding to the step in your scikit pipeline.

• You MUST use the names of the parameters that are same as the ones accepted by scikit-learn components (i.e.
preprocessors, estimators etc).

Below is an example of this section.

10 Chapter 3. Usage



scikit-nni Documentation, Release 0.2.1

nniConfigSearchSpace:
- normalizer:

norm:
_type: choice
_value: [l2, l1]

- svc:
C:

_type: uniform
_value: [0.1,0.0]

kernel:
_type: choice
_value: [linear,rbf,poly,sigmoid]

degree:
_type: choice
_value: [1,2,3,4]

gamma:
_type: uniform
_value: [0.01,0.1]

coef0:
_type: uniform
_value: [0.01,0.1]

Note that sklearn.svm.SVC takes C, kernel, degree, gamman and coef0 is the paramaters and hence we have used here
the same names (keys) in the search space specification. You can add as many or as little parameters to search for.

3.1.4 NNI Config Section

This is the simplest of all sections as there is nothing new here from sknni perspective. You just copy-paste here your
NNI’s config.yaml here. You do not have to specify codedir and command field in the trial subsection as this is added
by the sknni in the generated configuration files.

Here is an example.

# This is exactly same as the one that of NNI
# except that you do not have to specify the command
# and code fields. They are automatically added by the sknni generator
nniConfig:

authorName: default
experimentName: example_sklearn-classification
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 100
trainingServicePlatform: local
useAnnotation: false
tuner:

builtinTunerName: TPE
classArgs:

optimize_mode: maximize
trial:

gpuNum: 0

You can look at the various examples in the repository to learn how to define your own specification file.

3.1. Step 1 - Write specification file 11



scikit-nni Documentation, Release 0.2.1

3.2 Step 2 - Generate your experiment

sknni generate-experiment --spec example/basic_svc.nni.yml --output-dir experiments

Above command will create a directory experiments/svc-classification will following files

• The original specification file i.e. basic_svc.nni.yml (used during experiment run as well)

• Generated Microsoft NNI’s config.yml

• Generated Microsoft NNI’s search-space.json

3.3 Step 3 - Run your experiment

This is same as running nnitctl

nnictl create --config experiments/svc-classification/config.yml

12 Chapter 3. Usage



CHAPTER 4

sknni

4.1 sknni package

4.1.1 Subpackages

sknni.datasource package

Module contents

sknni.internals package

Module contents

4.1.2 Submodules

4.1.3 sknni.cli module

4.1.4 Module contents

Top-level package for scikit-nni.

13



scikit-nni Documentation, Release 0.2.1

14 Chapter 4. sknni



CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/ksachdeva/scikit-nni/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

15

https://github.com/ksachdeva/scikit-nni/issues


scikit-nni Documentation, Release 0.2.1

5.1.4 Write Documentation

scikit-nni could always use more documentation, whether as part of the official scikit-nni docs, in docstrings, or even
on the web in blog posts, articles, and such.

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ksachdeva/scikit-nni/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up sknni for local development.

1. Fork the scikit-nni repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/scikit-nni.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv sknni
$ cd sknni/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 sknni tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

16 Chapter 5. Contributing

https://github.com/ksachdeva/scikit-nni/issues


scikit-nni Documentation, Release 0.2.1

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.6 and 3.7, and for PyPy. Check https://travis-ci.org/ksachdeva/
scikit-nni/pull_requests and make sure that the tests pass for all supported Python versions.

5.4 Tips

To run a subset of tests:

$ python -m unittest tests.test_sknni

5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

5.3. Pull Request Guidelines 17

https://travis-ci.org/ksachdeva/scikit-nni/pull_requests
https://travis-ci.org/ksachdeva/scikit-nni/pull_requests


scikit-nni Documentation, Release 0.2.1

18 Chapter 5. Contributing



CHAPTER 6

History

6.1 0.2.1 (2019-10-21)

• Support for classArgs to steps in pipeline section

6.2 0.1.1 (2019-10-20)

• First release on PyPI.

19



scikit-nni Documentation, Release 0.2.1

20 Chapter 6. History



CHAPTER 7

Indices and tables

• genindex

• modindex

• search

21



scikit-nni Documentation, Release 0.2.1

22 Chapter 7. Indices and tables



Python Module Index

s
sknni, 13

23



scikit-nni Documentation, Release 0.2.1

24 Python Module Index



Index

S
sknni (module), 13

25


	scikit-nni
	Introduction
	Features
	Usage
	Troubleshooting
	Credits

	Installation
	Stable release
	From sources

	Usage
	Step 1 - Write specification file
	Step 2 - Generate your experiment
	Step 3 - Run your experiment

	sknni
	sknni package

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	History
	0.2.1 (2019-10-21)
	0.1.1 (2019-10-20)

	Indices and tables
	Python Module Index
	Index

